
March 3, 1998 Page 1

Rethinking the NTCIP Design and Protocols

Analyzing the Issues

24-Apr-19951

prepared by

Abstract

This working paper discusses the issues involved in changing the current draft
NTCIP standard from an X.25-based protocol stack to an Internet-based protocol
stack. It contains a methodology which could be used to change NTCIP’s base
protocols. This paper also includes background information on the current
NTCIP draft standard and the Internet network architecture to build a common
vocabulary for discussion and to present a review of those topics.

1Comments on this document should be addressed to: Joel Snyder, jms@opus1.com, +1 602 324
0494, via FAX to +1 602 324 0495, or via post to Opus One, 1404 East Lind Road, Tucson,
Arizona 85719.

March 3, 1998 Page 2

Introduction

The Monza implementation team has been tasked with discussing relevant
considerations to the use of the Internet Protocol (IP) suite of communication
protocols instead of the X.25 suite. In order to best explain the issues involved,
it's first necessary to define the role both IP and X.25 present to a networked
system, and then examine the differences that the IP suite introduces to such a
system.

This document was prepared as a result of user response solicited by FHWA.
The Monza team has no doubt that the current NTCIP draft represents an
implementable and complete protocol description. However, the use of a
different technology base inside of the NTCIP protocol may present additional
advantages beyond those offered in the current system.

Modern networked systems are discussed with regard to how their various parts
represent the OSI Reference Model of networking, also referred to as the Seven
Layer Model. This model of distributed communication includes a layered
representation of networking, breaking down "the network" into seven discrete
functional areas. Each functional area (layer) presents an idealized interface to
an upper layer, and makes use of functionality provided by the lower layers.

Physical

Datalink

Network

Transport

Session
Presentation

Application

OSI Reference Model

Local Network Protocol

IP Stack Model

UDPTCP

IP ARP

Figure 1: OSI and Internet models

March 3, 1998 Page 3

Traffic Control Overview

Before delving into the discussion of how X.25 or IP can be used to solve the
problems of the traffic control environment, a review of this environment is
given here. This is done in a fashion that is independent of protocol
considerations. It includes the topology, link configurations, communication
requirements, etc. To the extent that they affect the communications platform,
aspects of the traffic control applications are also given here.

Topology

Figure 2 below depicts the general traffic-control topology from which two real
topologies are derived. In both cases, the general topological structure is one of a
hierarchical tree with a central computer at the root. Each branch
(communications link) contains one or more nodes or station types (e.g., central
computers, masters, controllers) from which additional branches may emanate.
These nodes serve different purposes from a traffic-control perspective but may
not be very different, if at all, from a communications perspective.

March 3, 1998 Page 4

Central Computer
(A1)

Controller (A2) Controller (A7) Controller (A8)

Controller (A3)

Controller (A4)

Detector (A5)

Signboard (A6)

Controller (A9)

(1)

(2)

Notes for Figure 2: (1) Arterial masters may be present at this level. (2) Such links are
usually not present (3) Direct non-hierarchical communications between applications,
such as between A5 and A9, usually are not present.

Figure 2: NTCIP for Traffic Control Environment

In a centralized topology, the central computer communicates directly with all of
the controller units under its control. However, not all controllers need be on the
same communications link. For this topology, there is a permanent connection
between the central computer and the controllers. Tight control is exercised by
the central computer in this topology using a once-per-second control algorithm.

March 3, 1998 Page 5

In a distributed topology, an arterial master sits between the central computer
and the controller units. These masters are capable of exercising the necessary
control over the controller units. For this topology, a permanent connection is
not necessary between the central computer and the master; when
communication is needed, a dial-up connection can be established. A cycle-by-
cycle control algorithm is typically used in this topology (it may also be used by
some centralized systems).

In either of the above topologies, the communications link may operate at speeds
as low as 1200 bps. Because of the real-time aspects of some of the
communications (see below), the link operates in a master/slave polling
configuration so that control can be exercised as to which station is allowed to
put traffic onto the link. One station acts as master while all other stations act as
slaves. It is expected that future traffic-control links may operate in a peer-to-
peer mode where all stations on a link can originate traffic without being
selected by a master first.

In either topology, additional devices, such as detectors and count stations, sit
below a controller and exchange data with it.

Temp. Note — Other terms needing definition: field controller, system (input
from Ken Vaughn and Workshop).

Application Characterizations

Two types of applications are defined in the traffic-control environment.

Class A applications require that the underlying networking
infrastructure provides reliable communications in terms of bit
errors and loss. Typical applications might include bulk data
transfer.

Class B applications do not require reliability from the underlying
networking infrastructure other than guarding against bit errors.
Loss is not of concern since the nature of the information is such
that it will be updated on a short-term basis. Typical applications
include collection of status information.

Traffic from Class B applications must be given priority by a node for
transmission onto a link over any traffic from a Class A application.

March 3, 1998 Page 6

Traffic Patterns

Within a given tree as depicted in Figure 2, there may be only one path from a
given node to any other node. However, additional paths resulting from non-
hierarchical branches are not precluded.

Class B traffic flows only between two nodes on the same communications link
(branch). Class A traffic is not restricted in this way — it may flow between
nodes on the same link or on different links.

The tree depicted in Figure 2 will exist in many instances — that is, there will be
many, many such traffic-control trees within a jurisdiction, county, state, or the
nation. It is envisioned that there is no direct communication between
applications residing in nodes of different trees. Any such communication for
traffic control purposes would take place between the applications residing in
the central computers which, in turn, would relay the information (possibly in a
different format, such as a breakdown of a traffic control pattern into individual
controller/unit commands).

On the other hand, Figure 1 above does not preclude communications between
central computers and other types of traffic systems. However, this was not
envisioned to be in the scope of the NTCIP project. Such communications would
allow for a central computer to exchange information (other than for traffic
control) with a Traffic Management Center or Advanced Traffic Management
Systems.

Figure 3 show all of the types of traffic patterns discussed above.

March 3, 1998 Page 7

Notes: (1) Communication across traffic control domains, such as between A3 and B25,
usually is not present.

Figure 3: Traffic Patterns in and out of NTCIP

March 3, 1998 Page 8

Protocol Concepts

This section presents protocol concepts independent of any specific protocol.
These concepts serve as an introduction to the following sections of this report as
well as background material for the existing NTCIP work.

Basic Requirements

The fundamental requirement of the protocols chosen for the traffic control
environment is that they be open in the sense that they are widely accepted (not
proprietary) as a result of industry-wide development.

To serve a wide range of current and future needs, an overall architecture should
underlie the selected protocols. The Reference Model for Open Systems
Interconnection provides such an architecture, as described in the Introduction
of this report.

Types of Systems

For the purposes of communications and networking only, it is not important
whether a system is a central computer, a field controller, or whatever. For this
discussion, a traffic control system can be classified in two ways:

• whether it contains a Class A application, a Class B application, both, or
neither (the last case is possible since Class A information, as
discussed above, may be exchanged between systems attached to
different links, thereby giving rise to the possibility of a system just
forwarding such traffic between links); and

• whether it acts as a master or a slave for controlling traffic allowed onto
the link.

For the first classification, three logical system types are defined:

1. an End System A is one that has a Class A application;

2. an End System B is one that has a Class B application; and

3. an Intermediate System is one that forwards application
information without processing it (which, by definition of Class A
and B applications, is just for End System A’s).

March 3, 1998 Page 9

A real, physical station can be made up of any combination of the above three
logical system types. In reality, however, some types of traffic control stations
will only consist of certain types of logical system types. Given the nature of the
different logical system types, it can be expected that the protocol requirements
and functionality for different real stations can be different from one another.

The second classification is straightforward — one station is selected to serve in
the roll of master of the communications link while all others serve as slaves. The
master station contains a polling schedule by which it selects the slave station
with which it needs to communicate. This schedule may depend on the actual
configuration and types of stations attached to the link. The designation of a
station as a master or a slave does not, by itself, imply any other differences
between stations from a communications perspective (although one would
expect certain station types to never be masters).

Addressing and Routing

Given a need to communicate between stations, it is necessary to identify each
such station in a unique and unambiguous way. This is accomplished by
assigning an address to each station with which communications may be
necessary. An address is used to determine the location of an object (as opposed
to a name, which is location-independent). The location associated with a name
may change from time to time.

The scope of an address determines the boundaries in which the address is
guaranteed to be unique and unambiguous. Registration authorities (which need
not be humans) are used to ensure the necessary scope.

Addresses are independent of particular protocols. As such, the character set
used for an address (e.g., 0-9) provides an abstract, protocol-independent basis
to describe a station’s location. However, addresses need to be carried in
protocols to clearly identify the destination of information. One requirement of a
protocol is to ensure that it can accommodate both the length and character set
used to construct addresses.

Given an address, a path needs to be found to the station identified by its
address. The construction of one or more such paths constitutes the routing
function. Paths may be statically configured in a system or may be constructed
or discovered dynamically.

March 3, 1998 Page 10

Reliability

The many types of information handled by different applications result in
different requirements for moving the information across a distributed,
networked environment. Some applications, identified as Class A applications
above, require completely reliable transfer of information. On the other hand,
Class B applications do not require complete reliability.

There are several dimensions of reliability:

bit-error detection: bit errors (a “1” being changed to a “0” or vice versa)
may arise as information moves across a link (or even as it moves
across a bus within a system); reliability in this dimension requires
mechanisms to guard against undetected inversion of bits;

misordering detection: the information transferred between applications
may be sent in discrete “packages” called frames, packets,
messages or whatever; in some scenarios where multiple frames
can be in transit between the sender and the recipient at the same
time, it may be possible for frames to arrive in an order different
than in which they were sent — such cases require different paths
to be traversed by the frames; reliability in this dimension requires
mechanisms to guard against inadvertent re-ordering of frames;

loss detection: reliability in this dimension requires mechanisms to guard
against loss of a frame and may depend on what assumptions are
made about the possibility of misordered frames.

Protocols need to be used such that they satisfy the reliability requirements
associated with the application’s information. At the very least, reliability
requires detection of the particular error type. It may also be desirable to correct
the error

Connection-mode and Connectionless-mode Operation

Another dimension in which a protocol may be classified is its need to establish
some amount of state information between the communicating entities. For
example, the ability to detect loss or misordered frames depends on state
information existing (i.e., “what comes next?”) so that such errors can be
detected.

The existence of state information is associated with connection-mode (CO)
operation. In this mode, an association (i.e., the connection) is required to be
established before any information transfer can begin. The establishment of the

March 3, 1998 Page 11

connection serves to initialize the state information; the establishment and
subsequent release of the connection serve to delimit the transfer of information.
A typical example of CO operation is a telephone call.

The absence of state information is associated with connectionless-mode (CL)
operation. In this mode, there is no connection to be established or released.
Without state information, there can be no correlation between consecutive
frames (sometimes called datagrams) transferred between two stations. A typical
example of CL operation is the mail system, where two letters may arrive in an
order different than in which they were sent.

Note that CL operation does not, by itself, imply that any two consecutive
frames will ever be misordered. If there is only one path between two stations,
then misordering is not possible even without the establishment of a connection
and any associated state information. However, basic CL operation does not
make such assumptions and, therefore, mechanisms to guard against
misordering must be used if this dimension of reliability is needed by the
application.

Fragmentation and Reassembly

There may be times when it is not possible to “say everything you need to say at
one time.” In such cases, it is necessary to break the message into several smaller
pieces. This is also true in a communications scenario where a station, for
example, may be limited as to the amount of information it can transfer on the
link at one time. Such limits guarantee that no single station can dominate usage
of the link with a long message.

Fragmentation (also known as segmentation) provides mechanisms by which a
long message can be broken into smaller pieces while also providing the
capability to distinguish among different messages. These mechanisms need to
take into account whether the resulting smaller pieces can be misordered.
Reassembly provides the reverse process of fragmentation.

March 3, 1998 Page 12

Internet Architecture

The Internet is a global interconnected mesh of public and private networks all
utilizing the Internet Protocol (IP) suite. The original protocol was developed by
the United States Department of Defense (US DoD) under its Advanced Research
Projects Agency (ARPA). Its roots as a network developed by practical research
engineers, Internet standards are peer-review papers called Request-For-
Comments papers or RFCs. These RFCs are available on the Internet
(ftp://ds.internic.net/rfc) and can be provided as part of the NTCIP Monza
project by Opus One on request. The RFC which specifies the Internet Protocol
is RFC-791 and is referenced heavily in this document.

Readers who feel comfortable with their knowledge of the Internet architecture
and its protocols may feel free to skip this section, as it is entirely tutorial in
nature.

Internet Protocol

The network provides datagram-switching services from IP communicating
devices. These datagrams are called "IP packets" and the hardware entities
creating them are known as "hosts". Each network host has at least one physical
device capable of transmitting IP packets. This device is called an "IP interface".
Hosts with multiple such interfaces which forward packets between those
interfaces are called "gateways" or "routers". Routers are those specialized IP
hosts which forward packets on dedicated circuits (often leased lines or point-to-
point links) to connect disjoint networks. This organized packet-forwarding
function is known as "routing". We referred to "routers" in NTCIP as
Intermediate Systems (ISs).

The Internet Protocol is entirely designed to provide packet switched services. It
does not provide error detection, error correction, error recovery, reliable
service, flow control, sequencing, or any other higher-layer functionality for the
data inside of an IP packet. In fact, an IP packet header only includes a
checksum for the header itself, and not for any associated data.

March 3, 1998 Page 13

Notes: Time To Live was originally specified as a time, but is now a hop count, decremented by
one by each router an IP datagram passes through.

Figure 4: Internet Protocol Packet Header example

Since IP is merely layer three (the network layer) of the model, it is up to layer
four (the transport layer) to provide any of of those data checking functions.

Physical Layer

Medium Independence

IP was designed to be independent of the restrictions of a particular physical
medium. Each physical medium has its own unique set of restrictions.
Addressing of stations is a medium-specific concept. IP includes its own
addressing (discussed further under the Addressing subsection of the Network
Layer).

Address Mapping Mechanism

In order for IP to be able to utilize whatever addressing scheme is in use on the
physical medium it is communicating on, IP must have some intermediate
protocol to provide address conversion. This MAC-layer protocol is called the
Address Resolution Protocol (ARP). ARP takes a medium-specific address (such
as Ethernet's 48-bit station address) and maintains and updates a dynamic table
mapping those addresses to the IP addresses in use at that station. It can also be
updated statically for point-to-point links, serial links, and links not supporting
dynamic ARP. This table is called an ARP Table. This functionality is

March 3, 1998 Page 14

equivalent to the NTCIP X.25 PLP mapping of global addresses to multi-drop
line addresses.

Figure 5: ARP Table Example

Datagram Sizing Restrictions

IP's ability to use any datalink medium requires that it be able to effectively
determine that medium's maximum datagram size. In IP terms, that Maximum
Transmission Unit (MTU) specifies how many bytes of IP header and data can
be provided to the lower layer. An Ethernet network, for example, allows MTUs
of up to 1514 bytes. FDDI networks allow MTUs of up to 4096 bytes. An IP
system running on an FDDI would be allowed to send 4096 contiguous bytes,
but one running on Ethernet could only send 1514. For this reason IP also has
the ability to fragment large packets into smaller ones, and to reassemble the
original packets.

Fragmentation and Reassembly

When the IP host or intermediate router detects that the amount of data it needs
to send exceeds the MTU of a particular medium on which it has an interface, it
cannot send the data unchanged. If the IP-header flag bit labeled "DF" (Don't
Fragment) has not been set, IP will create multiple smaller packets from the
original packet. It does so by creating new, smaller IP packets, each having a
complete IP header which almost mirrors the original header. For practical
purposes, the new packets are themselves independent IP packets, although the
fragmenting host and the recipient host note the "MF" (More Fragments) flag in
the header, indicating that these packets should be placed on a packet fragment
reassembly queue.

March 3, 1998 Page 15

Figure 6: IP Header Flags field bits

The IP system which fragments the packet will place a unique number in the
Identification field of the fragment headers, and will place the fragment offset 0-
n in the Fragment-Offset field of the headers. Additonally, all but the last
fragment shall have the MF flag bit set.

The IP system designated as the end recipient of the packets shall take note of
the MF flag being set, shall reassemble the packets in order of fragment offset

(for each unique original packet Identification) until it receives a fragment
without an MF flag, indicating that it is the last fragment. Providing all
fragments have then been received (fragments 0-last) before a fragment

reassembly timeout occurs, IP shall then deliver the new and reassembled IP
packet to its upper layers.

Figure 7: Fragmentation Example

Broadcast and Multicast Operation

IP can use the ability to address multiple hosts either at a datalink level or at a
network level. Broadcasting is the sending of one datagram with everyone on
the local network receiving it. Multicasting is the ability to send to multiple
hosts with one unicast message. Datalink operations which use broadcasting

March 3, 1998 Page 16

include ARP requests, where a host will broadcast a request asking "who has the
following IP address?" and the host who has that address replies with a unicast
message. Multicasting includes the ability to specify a group of hosts to receive
a particular message. Both multicasting and broadcasting are a function of a
local network protocol which provides it. For example, Ethernet provides
broadcasts, but point-to-point serial lines do not.

Summary

IP was designed to be flexible and adapt to any networking medium. ARP maps
MAC-layer addresses dynamically. MTU-discovery protocols or static interface
constants provide efficient packet sizing. Fragmentation and reassembly allow
large packets to traverse smaller-MTU networks transparently to applications.

Datalink Layer

This layer is refered to in IP terminology as the Local Network Protocol. It can
be any protocol which encapsulates IP, such as Ethernet, Token-Ring, FDDI, etc.
The important item to note is that a standard encapsulation mechanism is
required, in order to ensure interoperability of IP on that datalink protocol.

Encapsulation

The encapsulation of an IP datagram (packet) within a local network protocol is
usually a function of placing the IP datagram within a local network frame or
packet and indicating that the higher layer protocol is IP. For example, in
Ethernet, one would make the entire IP datagram fill the "data" portion of the
Ethernet frame, and set the Ethernet protocol field to indicate protocol 0800 (hex)
for IP.

Figure 8: IP packet encapsulated in various LAN frames

March 3, 1998 Page 17

Network Layer

Addressing

IP is based on a simple addressing scheme employing unsigned thirty-two bit
addresses. These are often represented as four eight-bit quantities (octets)
separated by dots. This form of representing an IP address is known as a
"dotted quad". An example of an IP address would be 192.195.240.4. In binary
representation it would be 11000000.11000011.11110000.00000100.

IP addresses are assigned by a global addressing agency in order to provide that
all addresses are unique. Organizations seeking IP addresses are given a
contiguous range of IP addresses which begin on a boundary of a power of two
(e.g. the first address in the provided sequence has a contiguous number of 0-
bits on the right-hand side of the 32-bit sequence). This range is called a
"network". Modern assigned networks can be any range from 2 hosts through
65,536 hosts (1 bit network through 16 bit network). Past assignments were
limited to what used to be "Class" networks.

Figure 9: IP Addressing Example

Class A networks were those whose high bit was 0. These (1.0.0.0-127.0.0.0)
were assigned to large agencies who were then allowed to use the 24 bit range of
the latter three octets. Class B networks were those whose high bits were 10.
These (128.X.0.0 - 191.X.0.0) were assigned to medium-size agencies who were
then allowed to use the 16 bit range of the latter two octets. Class C networks
were those whose high bits were 110. These (192.X.Y.0-223.X.Y.0) were assigned
to smaller agencies who were then allowed to use the 8 bit range of the last octet.
Thus with knowledge of the first few bits, IP software could identify the sizing
of the local network. Shortage of global addressing space, as well as sizing of
router tables in the Internet backbone, has removed this Class distinction.

The new class-less Internet uses what are called Classless Inter-Domain Routing
(CIDR, pronounced "cider") style networks. These are specified as a prefix
network, and an integer indicating assigned number of left-hand bits. For
example, 192.195.240.0/24 refers to an assigned address range (network) of hosts
whose leftmost 24 bits are all the same as the leftmost 24 bits of 192.195.240.0.
While this may seem redundant or repetitive, note example two, where the

March 3, 1998 Page 18

network 204.17.32.0/22 means all addresses whose leftmost 22 bits are the same
as the leftmost 22 bits of 204.17.32.0, or in this case binary
11001100.00010001.00100000.00000000. Clearly this includes those networks which start
with decimal 204.17.33 through 204.17.35. These two examples illustrate that
with classless networking, any contiguous addresses starting on a power of two
boundary can be assigned, significantly saving global address space.

Routing

IP software is responsible for routing of network-layer datagrams. All IP
software implementations (IP Kernels) currently utilize a next-hop routing
algorithm. In simple terms, when examining a datagram not destined for the
local host, the IP kernel compares the network-layer destination address against
a table of potential next-hop gateways (the Routing Table). If a match is found,
indicating that a particular gateway supports a known method of reaching the
packet destination, then the packet is forwarded to that gateway. Necessarily,
all gateways in the routing table must be adjacent on some IP interface. If this
were not so, then a gateway would be more than one hop away, and routing to it
would require using an intermediate gateway. Packets forwarded on the local
network are encapsulated in the appropriate local network protocol, and sent on
that medium to the designated (intermediate) next-hop destination.

Routing tables are 2-tuples, mapping from destination network (range of hosts
addresses) to the gateway to use. Modern implementations include an optional
further specification of which interface to send the datagram on in case of
ambiguity, as well as relevant route flags.

Figure 10: IP routing example

March 3, 1998 Page 19

Flat Virtual Address Space

With IP's responsibilities to routing, and its attention to the number of bits
representing a network, the upper layers need not ever concern themselves with
the physical topology of the network. IP presents those upper layers with a
virtual address space of 32 bits. For example, it is not necessary for an
application-level protocol (say a mail program) to figure out if its address and
the destination address are on the same "network" or group of hosts, or whether
IP packets traveling to that destination route through one or more intermediate
gateways. Those details are obscured by IP as part of its layer function to take
care of all routing, addressing, and host-grouping issues. Of course, this same
function is provided by any network layer protocol.

Error Reporting

IP itself includes a variety of features designed to minimize potential error
conditions. Nevertheless, the nature of networking requires that a mechanism
be in place to provide information about errors, route failures, packet delivery
failure, etc. To provide this information, the host discovering the failure sends a
datagram to the host originating the original packet. However, to prevent this
datagram from potentially encountering an error itself, and thus creating an
infinite loop of error-condition-notification packets, the packet is specially
marked as an Internet Control Message Protocol (ICMP) packet.

ICMP

ICMP is an IP packet with the IP protocol-type field set to indicate an ICMP
packet. ICMP packets are used to report error conditions on packet-delivery or
forwarding of IP only. ICMP is not used to report errors about ICMP packets
(to preclude the aforementioned infinite loop) or about ARP, or any other
protocol.

ICMP provides multiple classes of errors indicating in general host
unreachability, network unreachability, packet time-to-live exceeded in transit,
or remote host service unavailable (for higher layer protocols using client-server
architecture).

March 3, 1998 Page 20

Figure 11: ICMP error codes and types

Transport Layer

The IP protocol suite includes a variety of upper layer protocols which operate
reliably and efficiently with IP as a lower layer. These include TCP, UDP, RDP,
and several others.

Figure 12: Applications using reliable transport layers over IP network layer

TCP

Transmission Control Protocol is the most popular of the transport layer
protocols used with the IP suite. TCP provides an end-to-end reliable byte

March 3, 1998 Page 21

stream. It implements sliding-window flow-control, multiplexing of virtual
circuits ("connections") over virtual circuit "ports", data sequencing, error
detection, error correction, retransmission, and out-of-band data delivery. All
data is sequenced, and acknowledged, with acknowledgement numbers
representing successful data transfer on each of the two half-duplex pipes that
form the full-duplex TCP connections.

TCP is a complex protocol, as far as the IP suite goes, providing all of the
functionality that any higher layer application might ever need. As a result of
this inherent complexity, the TCP header is a large and cumbersome data
structure. Fortunately, once a connection has been set up ("established") most of
the header fields are ignored, until the connection is torn down.

Figure 13: Example TCP Header

TCP Connection Multiplexing

TCP multiplexes and demultiplexes connections by assigning each local part of a
connection a port number identifier. Port numbers are 16-bit unsigned
quantities. Some ports are assigned to be used for particular services, and these
are called Well-Known-Ports. Services utilizing these ports (e.g. mail, remote
login, etc.) are called Well-Known-Services or WKS.

TCP Connection Establishment

A host and port combination is known as a Socket. Two sockets connected
together are known as a Socket-Pair or "Connection". A communicating entity

March 3, 1998 Page 22

("process") may have multiple such connections, and may even have multiple
connections with the same local port number (and different remote port or host
numbers). In order for a connection to be established, TCP requires that both
sides indicate their TCP sequence numbers, and that each acknowledge the
other's sequence space. To prevent a potential mutual-open-attempt with
identical port numbers, TCP uses a 3-way handshake. They do so by sending
packets with the SYN flag bit set, indicate a sequence-number synchronization.
Response packets have the ACK flag bit set, indicating the Acknowledgement
Number field has valid data.

Figure 14: TCP Connection Establishment

TCP Flow Control

Flow control is provided by the TCP header "Window" field. The window field
indicates how many bytes past the last acknowledged data this half-duplex pipe
is willing to accept. Data with sequence numbers past the window size are
silently dropped by the recipient. The Window can grow or decrease in size as
the buffer empties or fills, and its sequence number grows as the
Acknowledgement number grows. Hence it is a variable dynamically-sized
sliding window flow-control scheme.

Data Reliability

TCP includes a checksum for the TCP data and the TCP header. Thus, TCP is
the lowest layer at which data delivered to the upper layers is guaranteed to be
correct. TCP positively acknowledges data received correctly, and retransmits
data which is not acknowledged in a timely manner. With positive

March 3, 1998 Page 23

acknowledgements, a retransmission queue, and a 16-bit ones-complement
checksum algorithm, TCP delivers reliable data. (Note that there are more
comprehrensive checksum and CRC algorithms. This one was selected for use
by TCP and IP because it is computationaly cheap to calculate.)

Connection Teardown

TCP connections are torn down when either sides indicates a desire to close the
connection (or when one side explicitly requests a reset of the connection). The
FIN or RST flag bit signifies this condition. RSTs are immediate resets and incur
no painless teardown. FINs are for controlled circuit close. A 3-way handshake
similar to the SYN handshake is used for FINs.

Figure 15: TCP Connection Teardown

Summary

Because of its ease of use, a platform-independent programming interface
("Berkeley Sockets"), and the reliable byte-stream functionality, TCP remains the
most popular transport layer protocol. It utilizes large headers, sliding
windows, and positive acknowledgements to provide sequenced reliable data
transfers.

UDP

The User Datagram Protocol provides datagram-level services to IP network
users. As a transport protocol, it provides multiplexing, error detection, but no
error correction, no flow control, and no virtual circuit management. Because of

March 3, 1998 Page 24

this, UDP is considered a lightweight protocol, and its smaller header reflects
this.

Figure 16: Example UDP Header

UDP Error Detection

UDP packets include a checksum for determining whether the data arrived
successfully. UDP includes no facilities for reception acknowledgement, packet
retransmission, or sequencing.

UDP Connection Multiplexing

Like TCP, UDP multiplexes and demultiplexes connections by assigning each
local datagram sender or recipient a port number identifier. Port numbers are
16-bit unsigned quantities. Some ports are assigned to be used for particular
services, and these are called Well-Known-Ports. Services utilizing these ports
(e.g. Network Time Protocol, Network File System, etc.) are called Well-Known-
Services or WKS.

UDP Summary

UDP provides a connectionless datagram-oriented multiplexed delivery service.
No sequencing, retransmission, flow control, or acknowledgements are provided
by the protocol. It is a lightweight protocol both in terms of header size,
programming ease, and network overhead.

RDP

Reliable Data Protocol was suggested in July 1984 as a protocol providing
reliable end-to-end data yet implementing only a subset of the features that have
crept into TCP. RDP was primarily designed for batch loading of remote
machines. Hence it was intended to be simple to implement but not ideal for
interactive-style applications. Unfortunately, it never became popularly
implemented, and its use lies somewhere between "deprecated" and "obsolete."

March 3, 1998 Page 25

Figure 17: Example RDP Header

Optional Sequencing

Data sequencing using RDP is optional. Upon connection formation, sequenced
delivery may be specified, or unsequenced delivery may occur. The application
should determine which is necessary based on its concept of the capabilities of
the remote host.

Feature Lack Summary

RDP does not implement window flow control, segment size negotiation, urgent
(out-of-band) data delivery, or any of the other options which are available in
TCP. This makes RDP a poor choice for interactive sessions requiring out-of-
band data transfer (e.g. ^C or ^S). RDP has no standard programming
interface, unlike the Berkeley Sockets used with TCP and UDP. RDP employs a
variable header size.

March 3, 1998 Page 26

Reasons to and not to revisit the architecture

After working with the NTCIP draft standard, the Monza team believes that it is
basically stable and represents a viable description of networking protocols
which could be used in traffic control systems. There is no significant technical
fault with the approach taken in the NTCIP draft standard.

However, there are reasons why it is desirable to consider revisiting parts of the
NTCIP draft standard, including the following. Please note that these issues are
entirely orthoganol to the question of replacing the NTCIP network layer
protocols: they should be considered and discussed regardless of any decision
on the packet layer protocol.

• The NTCIP standard uses a data link layer based on HDLC and a
reduced X.25 packet layer. The changes adopted in the draft
standard document are significant enough that off-the-shelf
debugging equipment will not decode the NTCIP protocols and
off-the-shelf X.25 source codes would require significant
modification to support the NTCIP requirements.2 To speed the
development and debugging process, it would be advantageous if
engineers could use off-the-shelf equipment to monitor NTCIP
links. This could be accomplished by revisiting the data link layer
of NTCIP so that a more standard approach is taken.

• A connection-oriented X.25 network requires maintenance of hop-by-
hop connection tables. This increases the complexity of the
network to a considerable degree. A significant amount of the
design effort on the Monza prototype went into analyzing and
supporting the needs of connection maintenance for Class A
communications.

• The initial requirement that all stations support both class A and class B
communications in an operating-system-less environment has been
loosened since the initial design was presented. By far the greatest
Monza design went into building a pseudo-operating system and
run-time library to properly handle communications traffic in the
presence of an absolute minimum in the way of interrupts and
operating system facilities.

2This is true for the data link layer and, to a lesser extent, for the packet layer.

March 3, 1998 Page 27

If the design of NTCIP is changed so that controller-type end
systems (the lowest level of a traffic system, both in network
topology and in system capabilities) are only required to support
Class B communications and that any system which supports both
Class A and Class B communications can be assumed to have a
simple operating system (say, at least as powerful as Microsoft's
MS-DOS or even Unix), the overall complexity of the Monza
prototype would drop by 30% or more.

• The message types being defined in the NTCIP application layer have
changed scope so that they closely resemble a transaction-oriented
GET/SET protocol (SNMP, the Simple Network Management
Protocol, is being used as a model). The overhead of a complete
connection establishment for Class A communications to support
such simple transactions, which will typically require only two
data packets, is considerable. An architecture which more
efficiently supports simple transactions should be considered for
NTCIP.

• Dynamic address assignment or acquisition can simplify field
maintenance and initial configuration of networks. Because there
is no provision in the NTCIP drafts for dynamic address
assignment (a la IP's ARP, RARP, and BOOTP protocols), adding
this feature set should be strongly considered.

The prior five reasons suggest that the NTCIP architecture in the current draft
protocol document could be revisited with a view to reducing cost and time-to-
market for equipment manufacturers who wish to support the NTCIP protocols.

In addition, there are reasons to consider replacing parts (or even all) of the
NTCIP protocols with ones based more closely on the Internet architecture,
including:

• The enormous popularity of the Internet has made knowledge of the
Internet protocol suite a common commodity. While any
competent communications engineer will understand the design of
an X.25 network, these are outnumbered by tens of thousands of
undergraduates who are being exposed to the Internet as part of
basic business, computer science, and engineering degrees. This
easy availability of knowledge about TCP/IP would make it easier
for traffic equipment manufacturers to find the new knowledge
they need to incorporate NTCIP into new equipment.

• Although freely available software is typically not suitable for inclusion
into real-time control systems, the enormous number of IP kernel

March 3, 1998 Page 28

implementations available for easy inspection by traffic
engineering manufacturers will make the job of building data
communications kernels into traffic equipment simpler and less
expensive.

• While the scope of the NTCIP protocols does not include external
connections to analysis systems or traffic management systems, the
need for these connections is obvious. Because of the popularity of
IP-based networking, it may be a nearly universal requirement for
future traffic control systems to include Internet-architecture
network protocols to support these additional connections. If this
is true, than having a single protocol stack will be simpler, less
expensive, and more robust than having two stacks (Internet
TCP/IP and NTCIP) in a traffic control or management system.

There are also reasons for not replacing the X.25 component of the NTCIP
protocols with IP protocols:

• The header overhead of IP's datagrams is fixed at 20 octets (or more, if
options are specified). Once a logical channel has been established,
X.25 per-packet overhead is only 3 octets. Although IP headers are
easily compressed, there is no standard for compressing IP headers
alone–TCP and IP are both required. If the environment in which
IP is used is strictly limited in bandwidth, then IP has a high
overhead which may limit its usefullness. Alternatively, non-
standard IP header compression would compress the header
somewhat but would cause interoperability problems with non-
NTCIP IP implementations.

• Testing in the TCP/IP world usually focuses on interoperability bake-
offs rather than strict conformance testing. This approach is looser
than that traditionally used in X.25 protocol implementation
testing, with its thousand-plus pages of conformance tests.
Although no test methodology is perfect and will uncover all
problems in an implementation, the conformance testing
methodology of X.25 offers a greater confidence of long-term
interoperability than the one-on-one testing traditionally used with
Internet protocols.

• The idea of a PICS (Protocol Implementation Conformance Statement)
does not really exist in the Internet world. As part of years of
experience, the collective wisdom of TCP/IP implementors was
collected in the Host Requirements RFCs (currently RFC1122 and
RFC1123), which serves many of the purposes of a PICS. However,
there are still implementation choices available which could cause

March 3, 1998 Page 29

interoperability failure even while the "letter of the law" was
followed.3 Therefore, the function of the PICS, while not obvious
in the Internet world, has especially important value in systems
where interoperability is key.

Summary

While the NTCIP architecture is technically sound, experience in the design and
implementation of the Monza prototype and changes in the system requirements
offer an opportunity for improvement of the draft standard before final
publication.

Compatibility and cost issues associated with the use of the IP protocol as a base
along with roughly equivalent technical capabilities make it a candidate for
inclusion in the NTCIP standard as part of the improvement process.

Balancing these three sets of issues to build the best NTCIP architecture will
require agreement on the environments for class A and class B communications,
including application requirements and hardware capabilities.

3It should be noted that these failures are rare and usually only occur in very complex systems
stretching the limits of Internet networking technology. Traditional Ethernet-based IP networks
normally interoperate at the IP, UDP, and TCP levels.

March 3, 1998 Page 30

Replacing Class A, Class B, or Both Types of Communications

When revisiting the NTCIP architecture, one could consider changing the model
for Class A or Class B communications, or for both.

Class B communications currently only require the simplest of protocol
elements: the basic NTCIP HDLC (data link layer) protocol plus a single byte of
protocol identification data. Class B communications are not routable; they only
allow a master station to communicate with a directly connected slave station.

If Class A communications were changed to use IP as a network layer protocol
(plus some other transport mechanism) and Class B communications were
changed to use IP as the transport over the current NTCIP HDLC, then a new
capability would be created: stations more than one hop away from each other
could communicate using Class B communications messages.4

In the current architecture, the only way that this capability is supported is via a
relatively complex application-layer relay. The relay must not only manage
address translation, but must also maintain state information about pseudo-
connections through it. More importantly, the presence of such a relay severely
restricts the possible range of communications between Class B systems and any
other systems. In particular, only a single communications connection can be
maintained at any one time and the Class B station could not asynchronously
offer status information during the lifetime of a connection. By making the end
systems which support Class B communications IP-compatible, the need for this
application-layer relay is completely eliminated.

In the current system requirements definition, there is no expressed need for
"routed" Class B communications. In the absence of such a requirement, it is
prudent to consider the additional stress which an IP kernel would place on end
systems which have limited memory, communications bandwidth, and CPU
power.

Relative to the existing Class B communications, a new Class B which includes
both HDLC and standard IP (but not TCP) requires:

Communications bandwidth 20 bytes addt'l per packet

CPU cost thousands of instructions per packet

4Note that this was never expressed as a requirement for NTCIP.

March 3, 1998 Page 31

Memory cost 8K to 64K for IP protocol and
associated buffers

Summary

If Class A communications are changed to be IP-compatible, then Class B
communications could be changed as well or left alone.

Advantages Disadvantages

Changing Class B End-to-End
communications possible

Very high additional cost
in memory, CPU, and
bandwidth

Elimination of
application relay
(possible advantage)

Any existing work
invalidated

Leave Class B as-is Simpler and smaller
implementation

Dual stacks in
intermediate systems (IP
and Class B)

Reduce time-to-market

March 3, 1998 Page 32

Compatibility of A and B communications

If Class A communications are changed to use IP while Class B communications
are unchanged, there are environments where both Class A and Class B
communications pass over the same physical layer.5

Because Class B communications are only defined over the NTCIP draft data
link layer (HDLC UI frames), this issue is reduced to that environment.

Although it might be possible to construct a second data link layer for the Class
A communications over multidrop lines, this is strongly discouraged. Having
two data link layers would complicate both the implementation and debugging,
would take additional memory and CPU resources, and would provide no
substantial benefits.

To operate both IP and Class B communications over the same data link layer
requires a protocol demultiplexing layer similar to the one in the current NTCIP
draft. Because IP is designed to operate in parallel with other network layer
protocols, IP provides a mechanism to identify different protocols using the high
nibble (4 bits) of the first octet of the packet header.

These values are allocated in the "Assigned Numbers" RFC (currently RFC 1700,
dated October, 1994):

Decimal Keyword Version
0 Reserved
1-3 Unassigned
4 IP Internet Protocol
5 ST ST datagram mode
6 SIP Simple Internet Protocol
7 TP/IX TP/IX: The Next Internet
8 PIP The P Internet Protocol
9 TUBA TUBA
10-14 Unassigned
15 Reserved

It would be possible to select a value for the protocol demultiplexing layer such
that the protocol demultiplexing layer overlays with the first byte of the IP
header. This would cause problems if the value were chosen incorrectly and

5In the existing NTCIP protocol draft, both class A and class B communications pass over the
same physical and data link layer using a protocol demultiplexing octet to distinguish them.

March 3, 1998 Page 33

interoperability at some future date with a future protocol were required. To do
this, an unassigned value could be selected in coordination with the IANA
(Internet Assigned Number Authority) and be used as the protocol
demultiplexing indicator. The bottom nibble of the first octet would be ignored.

This will allow an IP layer to run unchanged directly over the data link layer
without significant overhead and will allow the same IP traffic to be easily
routed to a larger internetwork. It is unlikely that the future compatibility
problems will be offset by the value of saving a single octet for IP traffic (note
that Class B traffic itself would not save the octet since something is still
required).

As an alternative, a "single-protocol" mode could be defined for links which will
run only Class B traffic to omit the demultiplexing byte. This would be a
configuration-time parameter which applies to all stations on a particular multi-
drop circuit. Again, it is unlikely that the savings of a single octet would be
worth the long-term effects of having a configuration parameter which is easily
mis-configured and would cause two systems to fail to interoperate.
(Interoperability failure would occur if the parameter were misconfigured
initially or if class A traffic was later put on a link but an existing system was not
reconfigured.)

In any case, if the existing Class B and an IP-based Class A communications
must operate over the same non-NTCIP data link layer,6 it would be important
to revisit the design of the protocol demultiplexing layer so that Class B traffic is
easily distinguished from Class A traffic by existing standardized IP systems. In
the current definition of the protocol demultiplexing layer, Class B traffic could
not be carried transparently over an existing network. If it is anticipated that
Class B traffic will be carried over non-NTCIP data link layers (such as SLIP or
Ethernet), then an appropriate and compatible demultiplexing layer would have
to be created.

To operate IP over the NTCIP data link layer will also require the definition of a
convergence function to map between IP service requirements and NTCIP data
link layer (the "Local Network Protocol" in IP terms) services. This is discussed
in the following section ("Swap out NTCIP A for IP-based A").

6For example, a SLIP or PPP circuit.

March 3, 1998 Page 34

Summary

Changes in the protocol demultiplexing strategy of Class A and Class B
communications could save a single octet for each packet, but only at
considerable risk of future compatibility or configuration complexity.

If Class B traffic will be carried over non-NTCIP data link layers, than a different
protocol demultilexing layer will need to be defined for each of the other data
link layers.

A Local Network Protocol must be defined to allow IP-based Class A
communications to operate over the NTCIP data link layer.

March 3, 1998 Page 35

Swap out NTCIP A for IP-based A

This section discusses the changes which would have to be made to the current
NTCIP draft at the network layer only to support IP in place of the current
protocol. These changes fall into four categories:

1) How will the NTCIP protocols operate over the physical layer? How
will the physical-address to IP mapping work?

2) What options from RFC 791 will be supported? What options from the
Host Requirements RFCs will be supported?

3) How will the ICMP function be supported?

4) How will routing be handled?

For convenience sake, we'll refer to "IP-A" as a hypothetical replacement for the
network layer using IP.

Local Network Protocol Issues

The local network protocol is responsible for managing the interface between the
IP layer and the physical layer. Characteristics of the local network protocol
include a MTU (maximum transmission unit), multicast and/or broadcast
attributes, and communications characteristics such as latency and thruput.

Operation over the NTCIP data link layer will assume polling such that the
multi-drop line appears to all stations as a half-duplex point-to-point link. (Note
that round-robin polling would be one way to accomplish this, but that other
polling strategies could also be appropriate.) No additional protocol elements to
control master-slave polling will be required. In the version of the NTCIP
protocol which we have available at Opus One, round robin polling is not
explicitly described. This should be added to the NTCIP protocol, whether or
not IP-A is included.

IP Topology

To operate over the NTCIP data link layer, IP-A must treat the layer as either a
point-to-point interface (in the case of a slave system) or as multiple point-to-
point interfaces (in the case of a master system). This is the simplest model. A
variant would allow the master to simulate multicast or broadcast
communications. However, there is no expressed need for this in the NTCIP
requirements.

March 3, 1998 Page 36

Support of multiple point-to-point interfaces in the master would typically
require that the master emulate a multi-homed host, maintaining a separate IP
address for each end of each interface. This, combined with the necessary
subnet procedures, would make configuration of a heavily multi-drop service
quite confusing. To avoid this, a mechanism should be designed which fits
within the framework of the IP addressing and routing techniques to provide a
simple configuration for multi-drop service.

In environments where multi-drop links are in use, this could be created through
different network masks on each interface (including a 32-bit mask at the
furthest leaves on the multi-drop side). This is a simple and easily configurable
system which fits in the IP addressing scheme with a minimum of confusion.

Other possible mechanisms for dealing with this configuration issue are
possible. It would be valuable for the implementers of NTCIP to receive some
guidance in this area to encourage similar configuration paradigms across
vendors.

MTU

The current suggested Data Link layer I field maximum is 515 octets. If one octet
is lost to protocol identification, this gives an MTU of 514. This offers no
incompatibility with existing IP implementations. To reduce fragmentation,
some guidance about suggested data link layer I field sizes greater than 514 (say,
for example, 577, which would be a better match for other WAN links) should be
provided in the NTCIP protocol specifications. Raising the minimum data link
layer I field size to 577 might also be appropriate.

Note that the original MTU size of at least 514 octets was chosen based on the
projected size of some NTCIP PDUs. If the majority of NTCIP PDUs fit into a
smaller packet, as has been suggested will be the case, there may be no reason to
have an MTU size that large, and it could be dropped to reduce memory buffer
requirements in end systems. Note, however, that small MTUs increase the
overhead percentage which packet headers consume when packets are
fragmented.

MAC-to-IP address resolution

A mechanism for mapping MAC layer addresses to IP addresses will be needed
when operating IP-A over a multi-drop physical layer. In operation over
Ethernet, IP normally uses ARP, the Address Resolution Protocol, to discover
MAC addresses given IP addresses. Some environments also use RARP, Reverse
ARP, to discover IP addresses given MAC addresses.

March 3, 1998 Page 37

Neither ARP nor RARP could run un-changed over the NTCIP data link layer.
However, the function of ARP and RARP could be provided by a slightly
modified version of these protocols.

NTCIP implementors may wish to use one or both of these protocol functions to
assist in configuration of traffic control systems or in re-configuration of systems
after equipment failure. For environments which are largely static, however,
configuration-time assignment of MAC-to-IP mappings is not unreasonable.

IP-A operating over traditional broadcast media, such as Ethernet, should use
standard ARP protocol. IP-A running over serial line protocols such as SLIP
could use either static configuration or dynamic discovery of IP-to-MAC address
mappings.

It is probably a good idea for NTCIP to support the ARP and RARP functions,
but not to require it. In the interest of speeding time to delivery of IP-A
specifications, we suggest that a placeholder in the NTCIP protocols be left for
the function of the ARP and RARP protocols over serial interfaces (such as SLIP
or the NTCIP data link layer), but that these not be included in the first version.

DHCP, the Dynamic Host Configuration Protocol, is a newer Internet protocol
which builds on the base of RARP (and BOOTP, the Boot Protocol). It would be
prudent for NTCIP to investigate including DHCP instead of RARP if a
placeholder is left for the RARP-function of dynamic learned configuration.

For the purposes of configuration simplicity in MAC-to-IP mapping, the 1, 2, or
3-octet data link level addresses used in the NTCIP data link layer should be
padded internally to right-justified 4-octet addresses. For example, a 2-octet
address of 0xCAFE should be considered internally as a 4-octet address of
0x0000CAFE.

Non-NTCIP Serial Lines

For simple point-to-point links carrying only IP-A traffic (see, for example,
communications between A1 and A8 in the figure below), implementors should
be given the choice of a non-NTCIP data link layer such as SLIP or PPP. For
reasons of simplicity and because they offer technical equivalence, SLIP should
be indicated to NTCIP implementors as the preferred serial line protocol.

March 3, 1998 Page 38

RFC-791 Options

A number of fields and options are defined in RFC-791 which may either be
inapplicable to NTCIP applications or undefined in the NTCIP environment.

The notes below apply mainly to the issues of changing only class A
communications. If class A and class B communications were changed, then the
issue of fragementation (i.e., DF bit would always be set in class B
communications) should also be addressed.

March 3, 1998 Page 39

Type of Service

Most gateways ignore the Type of Service octet in the IP header. NTCIP
applications should not assume that this octet can be used to indicate type of
service.

IP Options

Few of the options are implemented by common IP kernels and/or gateways.
NTCIP applications should not assume that IP options will be useful. For pure
NTCIP-to-NTCIP communications, it would not be unreasonable to specify that
the IP option field can be ignored in IP-A. However, it would be poor practice
to require that no options ever be present.

Addressing

The new CIDR addressing ("classless" addressing) is more flexible and
particularly suited to the hierarchical topology of traffic control networks. It
would be a good idea for NTCIP IP-A to require support for classless addresses
(sometimes called "supernets" and "subnets"). See also RFC-950.

Time To Live

Some IP kernels have hard-wired artificially low TTL values. It would be
reasonable for the IP-A specifications to require that the TTL value be set
without recompiling the kernel.

IP Header Checksum

Some IP kernels have omitted the IP header checksum. This would not be
acceptable for IP-A.

Host Requirements RFC

RFC 1122 is the current Host Requirements RFC which discusses IP and ICMP.
It would be reasonable for IP-A to follow the recommendations in RFC 1122
except where explicitly stated above. The following additional notes may be
helpful:

IGMP is probably not useful for IP-A. Neither is IP multicasting.

March 3, 1998 Page 40

EMTU_R ("Effective MTU to receive") defines the size of the reassembly
buffer. This is required to be at least 576 octets by RFC 1122. A
larger value may be required for IP-A to efficiently support the
application layer protocol. This should be studied and explicitly
stated.

ICMP Issues

Per the Host Requirements RFCs, ICMP should be required of all NTCIP stations
which implement IP-A.

[Ehud, Dan: are there any exceptions or changes to ICMP which we want to
relax? Are there any semantics differences? I don't think so, and in the absence
of comment from you, would simply end this section here.]

Routing Issues

IP routing is currently in a state of flux and confusion. In the absence of a clear
requirement for a dynamic routing7 protocol or router discovery protocol, we
recommend that static routing using default gateways and static routes be
specified in NTCIP.

However, it should be noted in NTCIP that any routing, static or otherwise,
must include full support for classless addresses (i.e., both supernets and subnets
of existing class-full addresses).

If fault tolerant operation using dynamic routing is required, this
recommendation should be revisited.

7That's roo-ting, by the way.

March 3, 1998 Page 41

Application requirements which drive transport

The expressed direction for application level messages in NTCIP is an SNMP-
like system. SNMP uses a simple request/response protocol with operations like
"get" and "set." Many, if not most, NTCIP transactions will be completed in two
application-level messages: a request of some sort and a response to that request.

In the discussions which follow, we concentrate on the issues involved in
changing class A communications to support this application requirement, while
leaving class B communications the same. Thus, the choice of class A or class B
communications in a particular transaction will depend on the hardware
capabilities and protocols configured into the network; many application-level
transactions could execute equally well over class A or class B communications
services.

The overhead associated with bringing up a TCP connection for a two-message
exchange is quite large, on the order of 300% overhead in packet count. In
addition, TCP is a relatively complex and powerful protocol which takes a
substantial amount of software to properly implement.

Alternatively, UDP offers no delivery guarantee and little opportunity to
conveniently associate longer multi-message transactions. Although the
overhead of UDP is low, applications would have to operate on a timeout-
implies-negative-acknowledgement basis.

NTCIP's application layer requires a protocol half-way between TCP and UDP:
one which offers connection reliability and association greater than UDP's
capabilities without all of the overhead of TCP.8

In the Internet model, this could be accomplished in a number of different ways:

1) Create a new protocol at the same level as TCP and UDP which
operates directly over IP. This would provide the greatest
efficiency by optimizing traffic directly over IP. However, it
would also cause the greatest long-term compatibility problems
with commercial IP implementations, many of which are not
capable of adding in a third protocol over IP. This problem is
particularly acute in the MS-DOS/Windows and Unix networking
worlds.

8Remember that we are only considering class A communications in this case; class B is
assumed to be unchanged.

March 3, 1998 Page 42

2) Create a protocol which runs at a layer higher than TCP and UDP,
presumably over UDP itself, which provides the common services
needed by NTCIP application messages. This is less efficient than
option (1), but offers the greatest opportunity to interoperate with
existing commercial implementations of the Internet protocol stack.

3) Modify the application layer messages to include whatever services
that particular message requires of either raw IP or UDP. This
alternative supports the popular and oft-quoted "end-to-end
argument." However, it also requires application message
designers to also become transport protocol designers. This
alternative also violates good principles of network layering by
placing transport-layer functions into the application layer.

Deciding between these varied options requires a careful analysis of the
requirements of the application layer messages. Options (1) and (2) require a
small protocol to be defined for operation over either IP or UDP. Option (3)
requires a set of common definitions and operations to be defined for inclusion
in application-layer messages.

Conclusions

The architecture of the NTCIP draft protocol deserves reconsideration after our
experience in designing an implementation of the protocols. Issues such as
coexistence of class A and class B communications, operating system support,
and routing suggest that there continues to be room for improvements which
will shorten design and implementation time and reduce costs without
sacrificing interoperability.

A version of the NTCIP standard which includes Class A communications based
on the Internet protocol suite, a new transport protocol over UDP, and supports
the other recommendations in this document would improve the architecture of
NTCIP systems by making them off-the-shelf interoperable with existing
Internet-architecture products and systems.

Changing the current NTCIP draft protocol to support IP would be a relatively
simple matter. The topics listed in this paper are of a relatively narrow scope
which could be acted upon in a short period of time. The transport layer
protocol issue will take the longest to resolve since it will involve design of a
transport protocol to replace any necessary functionality lost by changing from

March 3, 1998 Page 43

X.25 to IP. Nevertheless, a simple transport protocol which provides the needed
functionality will not be either complex or lengthy to design.9

From the point of view of the Monza team, we feel that the total time to complete
a prototype will be slightly longer if this approach is taken, solely because the
existing design will have to be revisited. However, the simplifications
introduced into the architecture will partially compensate for added time by
reducing implementation time.

The total time to functioning non-Monza implementations may be shorter due to
increased availability of engineers familiar with TCP/IP.

9This protocol would also not be an existing standard, which raises questions of long-term
interoperability along the same lines as the question of long-term interoperability with X.25.

